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The new polarization images from the EHT are a major advance from the original images of the total
intensity (Figure 1; Event Horizon Telescope Collaboration et al. 2021a,b). The polarized light from
the black hole in M87 originates from relativistic electrons spiraling around magnetic field lines; the
direction and magnitude of the polarized signal constrain the strength and structure of the magnetic
fields around the black hole. The new information from the polarimetric images considerably narrows
the space of allowed models for the structure of the region just outside the black hole’s horizon. In
particular, the EHT polarization images indicate that the magnetic fields in this region are strong
and coherently ordered; they push back against the infalling gas and extract the rotational energy of
the black hole to launch a powerful jet outside of the black hole’s host galaxy.
While polarization adds significant new information about the physics of the M87 black hole, it also

adds several new dimensions to the imaging problem. To make a polarized image from EHT data
requires solving for at least three different images simultaneously instead of one; the total intensity of
the radio signal including the unpolarized part, and the magnitude and orientation of the polarization
vectors. In addition, imperfections in the signal chain at the telescopes mix the polarization signals
together, introducing additional calibration errors.
As part of the process of moving to polarized data, the EHT developed a new class of image

reconstruction algorithms that attempt to characterize the full space of uncertainties on the polarized
image and calibration factors, given uncertainties in the data. This task is naturally captured by
the posterior distribution of images within a Bayesian statistical framework, and realized with new
imaging codes based on Markov chain Monte Carlo (MCMC) methods (Broderick et al. 2020a; Pesce
2021) developed within the EHT. While more computationally expensive than gradient-descent based
imaging methods, these new tools allow for a full characterization of the uncertainty in the calibration
terms and different image structures.
In producing polarized images, the EHT used these new posterior exploration algorithms together

with CLEAN (Mart́ı-Vidal et al. 2021; Park et al. 2021) and RML (Chael et al. 2016) methods.
Following a similar approach as for the first images, extensively testing different computational
methods on realistic synthetic data sets and comparing results across methods, the team developed a
better understanding of the different strengths and weaknesses of each approach, and built confidence
in the final result as an accurate representation of the magnetic field structure around the black hole.

NEW CHALLENGES FOR THE NEXT-GENERATION EHT

The EHT continues to grow, both through the addition of new telescopes to the array and through
technological advances that permit increased data capture rates at each telescope (Figure 3; Doeleman
et al. 2019). Future EHT observations will also add more dimensions to the data and correspondingly
more challenges to the image reconstruction problem. For instance:

• The enhanced array will see emission that is hundreds of times fainter and which extends over
a much larger field of view than the bright, compact ring seen in 2017. Such sensitivity is
necessary for capturing the connection between the black hole in M87 and the relativistic jet
that it launches, but imaging this faint and extended emission requires algorithms capable of
accurately reconstructing images across several orders of magnitude in both brightness and
spatial scale.

• High-cadence observations will be required to produce images on short enough timescales to
capture the dynamics of Sagittarius A∗, the black hole in the center of our Milky Way galaxy
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around which plasma can orbit with periods of only several minutes. On such short timescales
data sparsity is the limiting factor, and dynamic imaging methods must encode the expected
temporal correlations to successfully reconstruct “movies” from these data (e.g., Bouman et al.
2018; Johnson et al. 2017; Levis et al. 2021).

• Observations spanning multiple radio frequencies will provide more constraints on the physical
conditions in the relativistic plasma around the black hole.

In addition to the challenges associated with increased data quality and volume, next-generation
EHT imaging algorithms will strive to enable precision tests of general relativity, which require
a precise understanding of the uncertainties inherent in any measurements made from EHT data.
Uncertainty in the image structure is driven by a number of factors, including the finite signal-to-
noise in the measurements, the sparse filling of the array, and the imperfect data calibration. These
sources of uncertainty are traditionally seen as obstacles that imaging algorithms must overcome
during the reconstruction process, and much of the work in the RML imaging methods has focused
on developing and implementing a suitable suite of image priors that permit unique image solutions
in the face of these issues.
The ability of new MCMC-based (e.g., Broderick et al. 2020a; Pesce 2021) and variational inference

(e.g., Sun et al. 2020) imaging tools developed within the EHT to analyze a posterior distribution
of image structures permits a quantification of the significance and reliability with which various
image features are detected. By grounding the imaging further upstream in the data reduction
pipeline, uncertainties associated with calibration choices can be self-consistently incorporated into
the posterior distributions on image features (e.g., Natarajan et al. 2020). Critically, by tying the
imaging process to downstream science analyses, these posteriors can derive uncertainties on the
most important physical quantities in the image (e.g., Broderick et al. 2020b; Tiede et al. 2020),
potentially enabling more precise tests of astrophysical theories and gravity itself in the near-horizon
environment.

OUTLOOK

In the end, the imaging problem is only one of many that the present and future EHT must contend
with. The EHT requires the continued innovation in every single step of the signal processing, from
hardware engineering and the human logistical challenges associated with simultaneously operating
multiple observatories at hard-to-reach sites around the globe to the computational challenge of
calibrating and averaging petabytes of raw data down by orders of magnitude. From these steps on
through imaging and to a myriad of scientific analyses that occur downstream, the ultimate “imaging
algorithm” would provide a complete end-to-end description of this data trajectory. For the time
being such an algorithm lives only in the idealized realm of our imagination, but we continue to chip
away at the edges.
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